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The principal reason for stratification in 

the design of sample surveys is to reduce the 
variance of sample estimates. The factors that 
influence the reduction of variance include: 
choice of stratification variables, number of 
strata, determination of stratum boundaries, and 
allocation of the sample. 

The purpose of this paper is to quantify 
gains in precision due to the choice of stratum 
boundaries. We make the common and somewhat 
restrictive assumptions that there is only one 
estimation variable Y and only one stratification 
variable X. Furthermore, we assume that Y and X 
have a bivariate normal distribution with cor- 
relation p between Y and X. 

In the context of stratified random sampling, 
gains in precision will be quantified by compar- 
ing the variance of the stratified mean with the 
variance of the unstratified mean. Two types of 
sample allocation will be considered: Neyman 
allocation and proportional allocation. 

For each type of sample allocation, the 
immediate problem is how to choose stratum bound- 
aries. The results of this study will be of 
greater value if the boundaries are determined 
in some unique manner, and optimum boundaries 
seem to be the most reasonable standard. Opti- 
mum boundaries minimize the variance of a par- 
ticular estimator for a given type of sample 
allocation. 

There is an extensive literature on opti- 
mum stratification, but unfortunately there are 
no rules for choosing optimum boundaries that 
are both explicit and practical. Typically min- 
imal equations are derived which the optimum 
boundaries must satisfy, but these systems of 
equations are not easily solved. The thrust of 
much of the work in the area of optimum strati- 
fication has been toward the development of 
relatively simple rules for determining approx- 
imately optimum stratum boundaries. 

One of the more widely known rules is the 
cum. rule of Dalenius and Hodges [5]. This 
rule is based on the set of equations: 

fhJf(x)dx (h/L) 

h=1,...,L-1, 

(1) 

where f is the p.d.f. of the stratification 
variable and L is the number of strata. The roots 

are the approximately optimum stratum 

boundaries. 

In the last few years several writers have 
proposed cum. cube root rules. For example, see 
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Singh [13] or Thomsen [14]. In the setting 
dealt with in this paper, the cube root rules of 
Singh and Thomsen coincide and give approximately 
optimum stratum boundaries which are 

the roots of the set of equations: 

(h/L) x)dx, (2) 

h=1,...,L-1. 

We will compare boundaries determined by the 
cum. rule and by the cum. rule to optimum 
stratum boundaries obtained by solving minimal 
equations using iterative techniques. One method 

of comparison will be to examine the various sets 
of boundaries and to note gross differences. The 
other method will be to calculate a ratio of var- 
iances which will measure the relative loss of 
precision resulting from use of approximately 
optimum boundaries rather than optimum boundaries. 

The general theoretical framework implicit 
in this discussion is found in Singh and 
Sukhatme [12], [13]. Techniques for solving 
minimal equations are given in Murthy [9] and 

Sethi [11]. 

Applying the theory and methods mentioned 
above, we obtained optimum stratum boundaries in 
the case of Neyman allocation. Also obtained 
were the approximately optimum stratum boundaries 
given by the cum. rule and by the cum. rule. 

Table 1 allows an easy comparison of some select- 
ed sets of boundaries. 

In Table 1 the stratification variable is 
assumed to have a standard normal distribution; 
ie. X N(0,1). There is no loss of generality 

because the transformation = converts 

standardized stratum boundaries found in the 

table to optimum and approximately optimum stra- 

tum boundaries for a stratification variable 

distributed 

In the case where the number of strata 
exceeds two, the optimum points of stratifica- 
tion depend on as well as the value of L. 
These points are symmetric about zero, and for 
fixed L, they decrease in absolute value as 
increases. Greater decreases are associated with 
higher values of Also the amount of de- 
crease is related to the distance from the mean. 
Those points which are farthest from the mean 
show the greatest decrease. 

The square root rule (1) and the cube root 

rule (2) yield approximately optimum stratum 
boundaries which are symmetric about zero. One 



TABLE 1 

Comparison of Optimum Points of Stratification* for Neyman Allocation with Approximately 
Optimum Points Determined by the Cum. f Rule and the Cum Rule 

Number 

of 
Strata 

Optimum Points of 
Stratification 

Approximately Optimum 
Points of Stratification 

Cum. If Rule 

Approximately Optimum 
Points of Stratification 

Cum. f Rule 
3 0.25 0.61 0.61 0.75 

0.95 0.58 
0.99 0.56 

4 0.25 0.00, 0.98 0.00, 0.96 0.00, 1.17 
0.95 0.00, 0.93 
0.99 0.00, 0.90 

5 0.25 0.38, 1.24 0.36, 1.19 0.44, 1.46 
0.95 0.37, 1.19 
0.99 0.35, 1.14 

6 0.25 0.00, 0.66, 1.45 0.00, 0.61, 1.37 0.00, 0.75, 1.68 
0.95 0.00, 0.63, 1.39 
0.99 0.00, 0.60, 1.33 

7 0.25 0.28, 0.87, 1.61 0.26, 0.80, 1.51 0.31, 0.98, 1.85 
0.95 0.27, 0.84, 1.55 
0.99 0.26, 0.80, 1.48 

8 0.25 0.00, 0.50, 1.05, 1.75 0.00, 0.45, 0.96, 1:63 0.00, 0.55, 1.17, 1.99 
0.95 0.00, 0.49, 1.02, 1.69 

0.99 0.00, 0.46, 0.97, 1.61 

9 0.25 0.22, 0.68, 1.20, 1.86 0.20, 0.61, 1.08, 1.73 0.24, 0.75, 1.33, 2.11 

0.95 0.22, 0.66, 1.16, 1.81 

0.99 0.21, 0.63, 1.11, 1.72 

10 0.25 0.00, 0.40, 0.83, 1.32, 1.97 0.00, 0.36, 0.74, 1.19, 1.81 0.00, 0.44, 0.9f, 1.46, 2.22 
0.95 0.00, 0.39, 0.81, 1.29, 1.91 

0.99 0.00, 0.38, 0.77, 1.23, 1.82 

* 
The stratification variable is distributed N(0,1). Use the transformation to convert standard- 

ized stratum boundaries {xh} found in the table to optimum and approximately optimum stratum boundaries {xh} 

for a stratification variable distributed The stratum boundaries are symmetric about the mean 

and only nonnegative values have been included in this table. 

TABLE 2 

Vcum. f /Vmin and Vcum. f /Vmin 
under Neyman Allocation 

Number of Strata 

5 

0.10 1.00000* 1.00000 1.00001 

1.00009 ** 1.00005 1.00001 

0.50 1.00000 1.00010 1.00025 
1.00291 1.00160 1.00034 

0.95 1.00143 1.00012 1.00255 
1.04275 1.03703 1.01107 

0.99 1.00536 1.00292 1.00148 
1.07203 1.09408 1.05147 

*Vcum. f/Vmin 

**Vcum. f7vmin 
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can verify that = when the stratifica- 

tion variable X is standard normal. Note that the 
square root rule performs noticeably better than 
the cube root rule for large values of 'pl. 

Let min' Vcum. ' and Vcum. denote the 

variance of the stratified mean when optimum stra- 
tum boundaries are used, when the cum. VT rule is 
used, and when the cum. T rule is used, respec- 
tively. The ratios Vcum. f and Vcum. 

Vmin quantify 
the loss of precision incurred when 

using approximately optimum stratum boundaries 
rather than optimum boundaries. Table 2 gives 
values of these ratios under Neyman allocation for 
L= 3,5,10 and =0.10,0.50,0.95,0.99. 

Table 2 indicates that the Dalenius and 
Hodges cum. IT rule performs so well, even when p 
is moderate, that for all practical purposes this 
method gives optimum stratum boundaries. Losses 
in precision due to the use of this rule vary with 
L and p but are usually less than 0.5 %. Table 2 
also indicates that for large values of the 
use of the cum. rule leads to losses in pre- 
cision which are not negligible. For example, 
when L =5 and 0.99 there is a 9.4% loss in 
precision under Neyman allocation using the 
cum. rule but only a 0.3% loss using the 
cum. IT rule. 

For the purpose of discussing gains due to 
stratification under Neyman allocation consider 

Table 3. Let Var(Y) denote the variance of the 
unstratified mean. Table 3 was constructed by 
calculating [Var(ÿ)- minJ/Var(ÿ) for L =2,...,10 

and ,...,0.95,0.96,0.97,0.98,0.99. 
These values are interpreted as the proportion the 
variance is reduced when using a stratified mean, 
rather than an unstratified mean, to estimate the 
population mean. These are relative decreases, 
valid for any choice of the mean and variance of 
the marginal variates Y and X. 

Many values of L and were included in 
Table 3 because it is felt that this table has 
practical value. Given that the estimation var- 
iable Y and the stratification variable X are 
approximately normal and a reasonable guess is 
available for p, an investigator can look at the 
appropriate line in Table 3 and find estimates of 
the gains in precision which can be achieved under 
Neyman allocation by stratifying on the variable 

X. The gains increase to p2 as L increases, but 
there is a point of diminishing returns. With a 
knowledge of the cost of additional strata and the 
worth of increased precision, the investigator can 
choose a value of L (between 2 and 10) which is a 
compromise between the conflicting desires of min- 
imizing cost and maximizing precision. 

Table 3 indicates that the correlation be- 
tween the estimation variable Y and the stratifi- 
cation variable X is an important consideration. 
Large gains due to stratification come from strat- 
ifying on a variable which is highly correlated 

TABLE 3 

(Var( ;) -Vein] /Var( under Neyman Allocation 

Ipi 

Number of Strata 

2 3 4 5 6 7 8 9 10 

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
0.05 0.00159 0.00202 0.00221 0.00230 0.00236 0.00239 0.00241 0.00243 0.00244 
0.10 0.00637 0.00810 0.00883 0.00920 0.00942 0.00956 0.00965 0.00972 0.00977 
0.15 0.01432 0.01822 0.01986 0.02070 0.02120 0.02151 0.02172 0.02187 0.02198 

0.20 0.02546 0.03239 0.03530 0.03680 0.03768 0.03824 0.03862 0.03889 0.03908 
0.25 0.03979 0.05062 0.05516 0.05751 0.05888 0.05975 0.06034 0.06076 0.06107 
0.30 0.05730 0.07289 0.07943 0.08281 0.08479 0.08604 0.08689 0.08749 0.08794 
0.35 0.07799 0.09922 0.10812 0.11272 0.11540 0.11711 0.11827 0.11909 0.11969 

0.40 0.10186 0.12960 0.14123 0.14723 0.15074 0.15297 0.15448 0.15555 0.15633 
0.45 0.12892 0.16404 0.17875 0.18634 0.19078 0.19360 0.19551 0.19687 0.19786 
0.50 0.15915 0.20254 0.22070 0.23006 0.23554 0.23902 0.24138 0.24305 0.24428 
0.55 0.19258 0.24511 0.26707 0.27839 0.28501 0.28923 0.29208 0.29409 0.29558 

0.60 0.22918 0.29174 0.31787 0.33134 0.33921 0.34422 0.34760 0.35000 0.35177 
0.65 0.26897 0.34245 0.37311 0.38890 0.39812 0.40400 0.40797 0.41078 0.41285 
0.70 0.31194 0.39726 0.43279 0.45109 0.46177 0.46857 0.47317 0.47642 0.47882 
0.75 0.35810 0.45618 0.49695 0.51792 0.53016 0.53794 0.54321 0.54694 0.54968 

0.80 0.40744 0.51926 0.56562 0.58942 0.60331 0.61214 0.61811 0.62234 0.62545 
0.85 0.45996 0.58657 0.63886 0.66565 0.68126 0.69118 0.69789 0.70264 0.70613 
0.90 0.51566 0.65825 0.71684 0.74673 0.76412 0.77515 0.78261 0.78789 0.79177 
0.95 0.57455 0.73471 0.80002 0.83310 0.85224 0.86434 0.87250 0.87828 0.88252 

0.96 0.58671 0.75066 0.81740 0.85112 0.87059 0.88289 0.89117 0.89703 0.90133 
0.97 0.59900 0.76687 0.83508 0.86945 0.88925 0.90173 0.91012 0.91605 0.92040 
0.98 0.61141 0.78338 0.85313 0.88818 0.90829 0.92093 0.92941 0.93539 0.93977 
0.99 0.62395 0.80023 0.87166 0.90742 0.92787 0.94066 0.94921 0.95521 0.95959 
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with the variable of interest. For example, to 
achieve a 50% increase in precision, would 
have to exceed seven -tenths. 

In practice gains of stratification are often 
most important for sampling cluster means, rather 
than for elements. Both Y and X will then be 
cluster means whose distributions tend toward 
normal distributions by the central limit theorem. 
Thus, our results for the bivariate normal have a 
great deal of relevance. Furthermore, due to 
"aggregation" high values of p between Y and X 
are not uncommon. 

Investigating gains in precision for pro- 
portional allocation proved to be somewhat easier 
than for Neyman allocation because the variance 
of the stratified mean Var(ÿst) could be expressed 
in a simple relationship with Var(ÿ): 

Var(ÿst) Var(y)(1 -cp2), (3) 

where c is a function of L and the stratum 
boundaries {xh }. 

The following conclusions were found to hold 
for proportional allocation: 

1. The optimum stratum boundaries do not 
depend on p, as was the case with 
Neyman allocation. These boundaries 
can be found in Table 4 of Sethi [11]. 

2. The cum. rule leads to only 
negligible losses of precision. 

3. The cum. rule performs better 
under proportional allocation than 
under Neyman allocation, but the 
loss of precision exceeds that which 
would be incurred using the cum. 
rule. 

4. Under the normality assumption and 
with optimum or nearly optimum 
stratum boundaries, proportional 
allocation does almost as well as 
Neyman allocation at reducing var- 
iance. This result follows from 
the fact that these conditions lead 

to stratum variances which are 
approximately equal. 

Further discussion and additional tables for 
both Neyman and proportional allocation are given 
in the yet unpublished paper by Anderson, Kish, 
and Cornell [1]. Copies of this paper are 

available upon request. 
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